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Abstract

A closed equation for probability density function (PDF) of particles coordinates and velocities in a
nonhomogeneous turbulent ¯ow is obtained. On the base of the equation for PDF, a closed system of balance
equations for concentration, momentum and energy of a chaotic motion of dispersed phase in Eulerian variables is

derived. For the system of balance equations boundary conditions, describing particles interaction with a surface in
a two-phase ¯ow are found. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Turbulent liquid or gas ¯ows with dispersed phase
of particles or drops are widely used in power plants

and chemical engineering equipments. In designing sys-
tems of pneumatic and hydro-transport of dispersed
materials, it is necessary to predict the particles depo-
sition rate on channel walls. The movement of particles

to the walls in a turbulent ¯ow can be induced by
forces that are not directly associated with the ¯ow
regime, such as, forces of gravity, electrical ®eld and

thermophoresis. On the other hand, there are the
mechanisms of a pure turbulent nature that cause par-
ticles deposition on the channel walls in the absence of

external forces applied to the particles. The intensity of
turbulent mass transfer of dispersed phase depends on
the particles involving in a chaotic motion of the con-
tinuous medium. The rate of mass transfer due to non-

homogeneity of the turbulent ¯ow parameters in the
channel may be considerably higher than the rate of
mass transfer under the action of external forces. In

this case, we deal with purely turbulent mass transfer,

ignoring any additional forces acting on particles.

The review of semi-empirical methods for calculat-

ing turbulent transport of dispersed particles was

observed, for example, in Ganic and Mastanaiah [1]

and Papavergos and Hedley [2]. However, the area

of applicability of these semi-empirical relations is

limited by a narrow class of ¯ows. An approximate

model of near-wall turbulent vortices was utilized in

Fichman [3] and Fan and Ahmady [4] to estimate

the intensity of particles turbulent deposition. The

mass transfer models presented in Gusev et al. [5]

and Swailes and Reeks [6] were based on the con-

cept of an inertial ¯ight of particles near the chan-

nel walls. The advent of powerful high-speed

computers makes it possible to carry out direct nu-

merical simulations (DNS) of the statistical charac-

teristics of the continuum phase and the random

Lagrangian trajectories of the particles, for example,

Uijttewaal and Oliemans [7], Soltani et al. [8], Simo-

nen et al. [9]. However, DNS methods are generally

limited to the low Reynolds number cases. Further-

more, the run of these methods for two-phase tur-

bulent dispersed ¯ows requires tens of hours

International Journal of Heat and Mass Transfer 43 (2000) 3709±3723

0017-9310/00/$ - see front matter 7 2000 Elsevier Science Ltd. All rights reserved.

PII: S0017-9310(00 )00038-7

www.elsevier.com/locate/ijhmt

E-mail address: igor@derevich.msk.ru (I.V. Derevich).



processor time on superpowerful computers, that
limits the applicability area of these methods to

purely theoretical problems.
For practical purposes, the most e�ective method

for calculating turbulent two-phase ¯ows is based on
equations written in Eulerian variables. In this case,

turbulence of dispersed impurity is described within
the framework of the equations, similar to the
equations of continuous medium. This allows to use

huge experience that was accumulated in calculating
single-phase turbulent ¯ows. The method based on the

PDF approach for particles characteristics was
employed in Reeks [10] and Derevich [11] for tran-
sition from Lagrangian equations of an individual par-
ticle motion and interaction of the particle with a

surface to the system of balance equations for dis-
persed phase in Eulerian variables. The equations for
PDF of particles are comparable with the Fokker±

Nomenclature

C volume concentration of dispersed phase
Cm mean volume concentration of dispersed

phase

D
p
ij coe�cient of particles turbulent di�u-

sion (m2sÿ1)
Do

ii coe�cient of turbulent di�usion of pas-

sive impurity (m2 sÿ1)
Eij Eulerian correlation of ¯uid velocity

¯uctuations (m2 sÿ2)
F ¯uxes of dispersed phase parameters
gi acceleration of mass force (m sÿ2)
gp, hp response function of particles
J velocity of particles deposition on a sur-

face (m sÿ1)
kn, kt coe�cients of impulse restitution in nor-

mal and axial directions

LE Eulerian integral length scale (m)
L̂ operator in Eq. (35)
Lp characteristic length scale of averaged

parameters of dispersed phase (m)
L0 characteristic length scale across a two-

phase ¯ow (m)

lp distance of a particle inertial ¯ight (m)
N number of particles in the volume ON

pp, qp particles response functions
Rp position of pth particle (m)

rp ¯uctuations of a particle position (m)
TE, TL Eulerian and Lagragian time scales (s)
Tp integral time scale of ¯uid velocity ¯uc-

tuations along a particle path (s)
U actual velocity of ¯uid phase (m sÿ1)
u ¯uid velocity ¯uctuations (m sÿ1)
V actual velocity of dispersed phase (m

sÿ1)
Vp actual velocity of pth particle (m sÿ1)
V 0, V 00 particle velocity before and after col-

lision with a wall (m sÿ1)
vp velocity ¯uctuation of pth particle (m

sÿ1)
W averaged relative velocity of dispersed

phase (m sÿ1)

x, y, z Cartesian coordinate system (m)
Zp probability density function of a particle

transition

ZW transformation function of particles vel-
ocity during wall collisions

Greek symbols
a parameter characterizes the ``crossing

trajectory e�ect'', W=u
b ratio of Lagrangian and Eulerian inte-

gral time scales of turbulence, TL=TE

g parameter coupled with internal struc-
ture of turbulence, uTL=LE

D Heaviside step-function
d Dirac delta-function
dij Kronecker delta

S turbulent stresses in dispersed phase (m2

sÿ2)
sij � hvivji the correlation between components of

the dispersed phase turbulent velocity
(m2 sÿ2)

tp dynamic relaxation time of pth particle

(s)
op volume of pth particle (m3)
F, j PDF particles velocities and coordinates

and PDF only particles velocities, re-

spectively
w absorption coe�cient
CE Eulerian autocorrelation function of

¯uid phase velocity ¯uctuations
Cp ¯uid velocity autocorrelation function

along a particle trajectory

OE parameter of p articles inertia, tp=TE

ON volume of a ¯ow with N particles (m3)

Subscripts

p denotes parameters belonging to pth
particle

ÿ, + denote parameters of dropping and

re¯ecting particles
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Planck equation. Equation for particles di�usion in a
random velocity ®eld and boundary condition takes

into account the particles interaction with absorbing/
re¯ected walls, which was directly designed from the
Fokker±Planck equation by Nagvi et al. [12], Protopo-

pescu and Keyes [13] and Menon et al. [14]. The
designed boundary condition represents association
between a gradient of particles concentration and the

particles concentration on the wall and involves an
absorption coe�cient.
A di�erent technique for derivation the closed sys-

tem of equation for hydrodynamics and mass transfer
of dispersed phase with complemented boundary con-
ditions was proposed by Derevich and Yeroshenko
[15]. The boundary conditions take into account an

exchange of impulse and heat between particles and
wall. The mathematical procedure used in [15] was
based on the approximate solution of the closed PDF

equation. This procedure is linked with the Chapman±
Enskog method in the kinetic theory of gases.
This study is devoted to the generalization of PDF

approach to describe turbulent two-phase ¯ow with
dispersed phase in Eulerian variables. We achieved the
closed equation for particles PDF in nonhomogeneous

and nonstationary turbulent ¯ow. On the basis of ap-
proximate solution of the PDF equation, we discov-
ered a closed system of balance equations for
concentration, momentum and turbulent energy of dis-

persed phase. Complemented boundary conditions
with regard to the particles absorption and loss of par-
ticles impulse after collision with a surface are also

determined.

2. Equation for PDF

2.1. Average and ¯uctuating quantities

Particles of the spherical form are considered, size of
which is less then Kolmogorov turbulent spatial micro-
scale. In this case, dispersed particles may be modeled
as mathematical points. Similar situation is realized, as

a rule, at turbulent ¯ow of gas with particles or
droplets. Particles concentration is su�ciently diluted
such that any particle±particle collisions can be

ignored. In the Lagrangian equations for individual
particle motion in continuous medium, we take into
account only the viscous drag and gravitational forces

dVpi�t�
dt

� 1

tp

ÿ
Ui

ÿ
Rp, t

�� tpgi ÿ Vpi

�
,

dRpi�t�
dt

� Vpi

�1�

where Ui�x, t� is the velocity of a liquid phase, Rp�t�,

Vp�t� are the position and velocity of a pth particle,
and tp is the pth particle dynamic relaxation time,

which is dependent on particle relative velocity, gi is
the gravitational acceleration.
For passing from Lagrangian variables in Eq. (1) to

Eulerian variables, we determine instantaneous PDF of
particles coordinates and velocities

F�x, V, t� �
XN
p�1

op

ON
d
ÿ
xÿ Rp

�
d
ÿ
V ÿ Vp

� �2�

where op is the volume of the pth particle, ON the

volume of ¯ow, containing N particles, and d�x� the
Dirac delta function.
Volumetric concentration and velocity of dispersed

phase are expressed through the PDF

C�x, t� �
XN
p�1

op

ON
d
ÿ
xÿ Rp

� � � F dV �3�

C�x, t�V�x, t� �
XN
p�1

op

ON
Vpd

ÿ
xÿ Rp

� � � VF dV �4�

After averaging over an ensemble of turbulent realiz-
ations from de®nitions (2)±(4), we carry out the aver-
age PDF, concentration, and average velocity of the

dispersed phase

hF�x, V, t�i �
*XN

p�1

op

ON
d
ÿ
xÿ Rp

�
d
ÿ
V ÿ Vp

�+

hC�x, t�i �
*XN

p�1

op

ON
d
ÿ
xÿ Rp

�+ � � dVhF�x, V, t�i �5�

hC�x, t�ihV�x, t�i �
*XN

p�1

op

ON
Vpd

ÿ
xÿ Rp

�+

�
�

VhFi dV �6�

The instantaneous particle velocity we combine as the
sum of the averaged dispersed phase velocity at the
point x � Rp�t� and the ¯uctuating component

Vp�t� � hV�x, t�i � vp�t� � hV
ÿ
Rp�t�, t

�i � vp�t� �7�

By analogous expression (4) we de®ne the ¯uctuating

component of the dispersed phase velocity

C�x, t�v�x, t� �
XN
p�1

op

ON
vp�t�d

ÿ
xÿ Rp

� �8�
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From relations (5)±(8), the value of correlation
between concentration and velocity ¯uctuation of the

dispersed phase is zero

hCvi �
*XN

p�1

op

ON
vpd
ÿ
xÿ Rp

�+ � 0

The previous de®nition of ¯uctuating part of particles

velocity corresponds well with the common de®nition
of the ¯uctuating velocity component and PDF�
�V ÿ hVi�hFi dV �

�
vhFi dv � 0

We obtain from Eq. (7), the expression for the particle
instantaneous displacement

Rp�t� � hRp�t�i � rp�t� �
�t
0

Vp�s 0 � ds 0

�
�t
0

�hVÿRp�s 0 �, s 0
�i � vp�s 0 �

�
ds 0 �9�

2.2. Derivation of the PDF equation

In the terms of ¯uctuating velocity of dispersed
phase, we write down the equation for averaged PDF

hF�x; v, t�i
@ hFi
@ t
� �hVki � vk �@ hFi

@xk
ÿ
�
@ hVii
@ t
� �hVki

� vk �@ hVii
@xk

ÿ 1

tp

ÿhUii � tpgi ÿ hVii
��@ hFi

@vi

� ÿ @

@vi

1

tp
�huiFi ÿ vihFi� �10�

For obtaining the closed form of the Eq. (10), it is

necessary to ®nd an expression for correlation between
turbulent velocity of continuous phase and PDF huFi:
We approximate turbulent velocity ¯uctuation of car-

rying phase by a random Gaussian ®eld [16]. This
assumption is acceptable for energetic turbulent eddies.
We investigate the response of particles on the ener-

getic turbulent eddies. In this case, presentation of
¯uid turbulent velocity as the normal Gaussian process
is satisfactory. Based on this assumption, with the as-
sistance of the method of functional derivative, we

write the Furutsu±Novikov (Klyatskin [17]) expression
for correlation between turbulent ¯uid velocity and
PDF in Eq. (10)

huiFi �
�t
0

dx
�

dx1hui�x, t�uj�x1, x�ihdF�x, v, t�
duj�x1, x� i �11�

Here, the functional derivative from PDF becomes

dF�x, v, t�
duj�x1, x� � ÿ

@

@xk
F

dRpk�t�
duj�x1, x� ÿ

@

@vk
F

dvpk�t�
duj�x1, x� �12�

Functional derivative from particles position is deter-

mined considering de®nition (9)

dRpj�t�
duk�x1, s� �

@ h Vji
@xn

�t
0

d rpn�s 0 �
duk�x1, s�ds

0

�
�t
0

dvpj�s 0 �
duk�x1, s� ds 0 �13�

In the functional derivation dRpj=duk, we take into
account only part d rpj=duk, because dependence of the

average part hRpj�t�i on the turbulent ¯uid velocity is
not so strong as particle ¯uctuation displacement rpj�t�:
To derive of the equation for chaotic particle vel-

ocity in nonhomogeneous turbulent ¯ow, we utilize the

de®nition of particles ¯uctuating velocity (7). In con-
formity with relations (1) and (7) we write the
equation

dVpj

dt
� 1

tp

�
Uj

ÿ
Rp�t�, t

�ÿ Vpj�t�
�

� 1

tp

�hUji ÿ hVji � uj ÿ vpj
�

� dvpj�t�
dt
� @ hVj�x, t�i

@ t
jx�Rp

� Vpk�t�@ hVj�x, t�i
@xk

jx�Rp

We take into account only ¯uctuating members in this

equation and thus obtain

dvpj�t�
dt
� vpk�t�

@ hVj

ÿ
Rp�t�, t

�i
@xk

� 1

tp

�
uj
ÿ
Rp�t�, t

�ÿ vpj�t�
� �14�

We interpret Eq. (14) as an integral equation

vpj�t� � 1

tp

�t
0

exp

�
ÿ tÿ s

tp

�"
uj
ÿ
Rp�s�, s

�

ÿ tpvpk�s�
@ hVj

ÿ
Rp�s�, s

�i
@xk

#
ds �15�

From Eq. (15) one can see that in a nonhomogeneous

¯ow, random movement of inertial particles intensify
the dispersed phase chaotic motion. Energy of particles
chaotic motion is determined by a degree of particles

entrainment in turbulent ¯uctuations of large powerful
eddies of the carrying phase. We suppose, that the pri-
mary source of energy of particles chaotic motion
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coupled with turbulent velocity ¯uctuations of ¯uid
phase, and take into account the gradient of averaged

velocity of dispersed phase as the ®rst correction. At
this assumption, particles ¯uctuation velocity at the
term with a gradient of averaged velocity in Eq. (15) is

presented as

vpk�s� � 1

tp

�s
0

exp

�
ÿ sÿ s 0

tp

�
uj
ÿ
Rp�s 0 �, s 0

�
ds 0 �16�

Within the framework of this approximation from

Eqs. (15) and (16) we ®nd the expression for chaotic
velocity of particles in the nonhomogeneous turbulent
¯ow

vpj�t� �
�t
0

Au 0j
ds

tp
ÿ tp

@ hVji
@xk

�t
0

�
tÿ s

tp

�
Au 0k

ds

tp

A � exp

�
ÿ tÿ s

tp

�
, u 0 � u

ÿ
Rp�s�, s

� �17�

Introducing formula (17) into Eq. (9), we get the ex-
pression for the random displacement of the particle

rpj�t� �
�t
0

�1ÿ A�u 0j dsÿ t 2p
@ hVji
@xk

�t
0

(
�1ÿ A�

ÿ �tÿ s�
tp

A

)
u 0k

ds

tp
�18�

Being restricted in Eqs. (16) and (17) by the ®rst-order
averaged velocity derivatives of the dispersed phase,

we determine the functional derivations in Eqs. (11)
and (12)

d vpj�t�
duk�x1, s� � d

ÿ
x1 ÿ Rp�s�

�(djk
tp

A

ÿ @ hVji
@xk

�
tÿ s

tp

�
A

)
�19�

dRpj�t�
duk�x1, s� � d

ÿ
x1 ÿ Rp�s�

�(
djk�1ÿ A�

� tp
@ hVji
@xk

"
�tÿ s�
tp
�1� A� ÿ 2�1

ÿ A�
#)

�20�

In Appendix A, a calculation technique with appli-

cation of functional di�erentiation is submitted.
It is understood from Eqs. (10), (11), (19) and (20)

that expression for the correlation huiFi includes corre-

lation of ¯uid velocity ¯uctuations along the particle
trajectory. This correlation may be expressed in the

following form

hui�x, t�uj
ÿ
Rp�s�, s

�i � hui�x, t�ujÿxÿ Rp�x�, tÿ x
�i �21�

where

x � tÿ s, and Rp�t� � x:

2.3. Fluid phase velocity correlation along the particle
trajectory and particles response functions

The ¯uid velocity correlation (21) depends on
macroscales, which are proportional to the size of vari-
ation area of the averaged ¯ow parameters, and micro-

scales joined with internal microstructure of turbulence

hui�x, t�uj
ÿ
xÿ Rp�x�, tÿ x

�i
� hEij

ÿ
xÿ 0,5Rp�x�, tÿ 0,5x;Rp�x�, x

�i �22�

Here Eij is two-points and two-times Eulerian ¯uid vel-
ocity correlation in the coordinate system moving with
averaged velocity of the ¯uid stream

Eij

ÿ
xab, tab;Y, x

� � hui�xa, ta �uj�xb, tb �i
tab � 0,5�ta � tb �, xab � 0,5�xa � xb �, Y

� xa ÿ xb

�23�

The averaging in correlation (22) is carried out over an

ensemble of turbulent realizations, and random par-
ticles trajectories. Accepting signi®cant di�erences
between the value of scales of average variables xab
(macroscales) and relative variables Y (internal turbu-
lent scales) in expressions (22) and (23), we write down
the series

hEij

ÿ
xÿ 0,5Rp�x�, tÿ 0,5x;Rp�x�, x

�i1hEiji

ÿ x
2

�
@

@ t
hEiji � h

ÿhVki � vpk�x�
�@Eij

@xk
i
�

hEiji � hEij

ÿ
x, t;Rp�x�, x

�i
�24�

After substitution of expressions (19), (20) and (24) in

Eqs. (11) and (12), we obtain the particles response
function, describing entrainment of dispersed phase in
turbulent ¯uctuation of the carrying phase
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�t
0

AhEiji dx
tp
� qphuiuji,

�t
0

x
tp
AhEijidxtp � pphuiuji

�t
0

�
x
tp
�1� A� ÿ 2�1ÿ A�

�
hEiji dx

tp
� hphuiuji

�t
0

�1ÿ A�hEijidxtp � gphuiuji, A � exp

�
ÿ x

tp

�
�25�

The function hp is similar to that received earlier by
Zaichik [18]. In the formulas (25), characteristic tem-

porary scale of ¯uid phase velocity ¯uctuation along
the particle trajectory is of the order of Eulerian inte-
gral time scale TE: It should be pointed out that ¯uid
velocity correlation (23) must satisfy the conditions of

equilibrium (stationary conditions) at the turbulent in-
ternal microscales

@Eij�Y, x�
@x

� @Eij�Y, x�
@Yk

� 0, for x � 0 or Y � 0

For the inertial particle tp � TE from formulas (25) it

follows that

qpATE=tp, ppAgpA
ÿ
TE=tp

� 2
, hpA

ÿ
TE=tp

�4 �26�

In a case of the particle with small inertia tp � TE, we

have

qp4pp41, gpATE=tp, hpA
ÿ
TE=tp

� 2 �27�

As a result of substitution Eqs. (19), (20) and (24) into

Eqs. (11), we ®nd an expression for the correlation
huiFi, which produce the closed form for the PDF
equation (10)

huiFi � ÿtpGphuiuji@ hFi
@x j
ÿQphuiuji@ hFi

@vj
�28�

Gphuiuji � gphuiuji � 1

2
tphp

�
huiuki@ hVji

@xk

� hujuki@ hVii
@xk

�
�29�

Qphuiuji � qphuiuji ÿ 1

2
tppp

�
@ huiuji
@ t
� hVki@ huiuji

@xk

� @ huiujuki
@xk

� huiuki@ hVji
@xk

� hujuki@ hVii
@xk

�
�30�

The expressions (29) and (30) include ¯uid velocity

correlation, terms connected with the gradient of the
averaged velocity of the dispersed phase, and also

terms representing nonstationary, convection and tur-
bulent transfer of an intensity of chaotic motion. With-
out the account of the terms with the gradients of

averaged dispersed phase parameters and nonstation-
ary additives, the expressions (28)±(30) coincide with
the appropriate expression obtained by Reeks [10].

In principle, PDF contains su�cient information
about hydrodynamics turbulent parameters of the dis-
persed phase. However, it is very di�cult to ®nd an

analytical or numerical solution of PDF equations (10)
and (28) in a strongly nonhomogeneous turbulent ¯ow,
and we are forced to address the system of moment
equations.

3. Equation for the ®rst and second moments of

dispersed phase velocity ¯uctuation

Out of the PDF equations (10) and (28), we can de-
rive by the standard way the system equations for
moment of dispersed phase velocity ¯uctuations.
The equations for concentration and averaged vel-

ocity of the dispersed phase look like

@ hCi
@ t
� @

@x i
hCihVii � 0 �31�

@ hVii
@ t
� hVki@ hVii

@xk
� @ hvivki

@xk

� hUii � tpgi ÿ hVii
tp

ÿ Dp
ik

tp

@ lnhCi
@xk

�32�

D
p
ik � tp

ÿhvivki � Gphuiuki
� �33�

where D
p
ik is coe�cient of particles turbulent di�usion.

The coe�cient of turbulent di�usion Eq. (33) takes

into account not only chaotic motion of particles (®rst
term in right-hand side of (33)), but also dispersed
phase turbulent motion with energy containing turbu-

lent eddies (second term in the right-hand side of Eq.
(33)). In the expression for turbulent di�usion of par-
ticles, enter gradients from the dispersed phase aver-
aged velocity (expression (29)). Averaged velocity of

dispersed phase is formed as a result of particles mov-
ing with the ¯uid velocity, action of the gravity force
and collisions of particles with surface.

Second moments of velocity ¯uctuations in the left-
hand side of Eq. (32) describe the turbulent stresses in
the dispersed phase arising due to involvement of par-

ticles in turbulent motion.
In Eq. (32), we ignore the in¯uence of the Sa�man

[19] lift force on the particles motion. This is due to
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two reasons. First, the formula for this lift force was
obtained by Sa�man for steady-state laminar ¯ow.

Consequently, the accurate analysis is required to
decide whether this expression can be applied to turbu-
lent ¯ow near the wall, where the level of ¯uctuations

of the axial velocity is comparable in magnitude with
the averaged velocity of the ¯ow. Second, the results
of DNS of two-phase dispersed ¯ow, for example,

Uijttewaal and Oliemans [7], indicate that turbulence
and particles inertia dominate over the Sa�man lift in
the transport of dispersed impurity.

The equation for the second moments of dispersed
phase velocity ¯uctuations also follows from the PDF
equations (10) and (28)

@ hvivji
@ t
� hVki@ hvivji

@xk
� 1

hCi
@ hCihvivjvki

@xk

� hvivki@ hVji
@xk

� hvjvki@ hVii
@xk

� 2

tp

ÿ
Qphuiuji ÿ hvivji

�
hvivjvkihCi �

�
vivjvkhFidv

�34�

Here, the third correlation of velocity ¯uctuation
describes the turbulent transport of the energy of
chaotic motion in the dispersed phase. The term with

the second ¯uid velocity correlation in the right part of
Eq. (34) expresses a source of the particles chaotic
motion.

For particles with small inertia tp � TE energy of a
chaotic motion of the dispersed impurity and carrying
phase are identical. From the behaviour of particles re-

sponse functions (25) in the cases of inertial (26) and
low inertial particles (27), it follows that in the source
term of dispersed phase chaotic motion in Eq. (34), we
can take into account only participation of particles in

turbulent motion of energy containing eddies

Qphuiuji1qphuiuji

4. Calculation of time scale of ¯uid velocity correlation

along a particle path

The functions of particles reaction on turbulent vel-
ocity ¯uid ¯uctuations (25) are controlled by the re-

lation between particles contact time with large
turbulent eddies and particles relaxation time. The
¯uid velocity correlation in Eq. (25) associates with the

coordinate system driven together with the carrying
stream. We may write the expression for ¯uid velocity
correlations along the particle path in the following

form

D
Eij

�
x, t; R 0p�x�, x

�E
�
�
hEij

ÿ
x, t; Yp, x

�
Zp

ÿ
Yp, x

�i dYp

Zp

ÿ
Yp, x

� � d
�

Yp ÿ R 0p�x�
�

�35�

where Zp�Yp, x� is a probability density function of the
particle transition during time x for the distance Yp;
R 0p, V 0p � Vp ÿ hUi are the position and velocity of the
particle in the coordinate system, respectively, moving

with the ¯uid stream.
We approximate the change of the particle position

during the time of life of turbulent energetic eddies by

the expression

R 0p�x� �
�x
0

V 0p
ÿ
x 0
�
x 01�W � v�x,

W � hVi ÿ hUi
�36�

where W is averaged relative velocity slip between con-
tinuous and dispersed phases; v is the characteristic
amplitude of particles velocity ¯uctuation.
For estimation of the dispersed phase velocity ¯uctu-

ation v in Eq. (36), we used the PDF in the local equi-
librium assumption. We approximate the particles
velocity ¯uctuation as the Gaussian random process,

and from expressions (35) and (36) obtain presentation
for ¯uid turbulent velocity correlation along the par-
ticle path

D
Eij

�
x, t; R 0p�x�, x

�E
1
�
Eij

ÿ
x, t; �W

� v�x, x�j�v� dv �37�

j�v� �
Y3
i�1

1

�2psii �1=2
exp

�
ÿ v 2i

2sii

�
, sij � h vivji �38�

where j�v� is the PDF of dispersed phase velocity ¯uc-

tuations. This PDF can be found as the solution to
PDF equation (10) for a stationary and homogeneous
turbulent ¯ow.

Integral time scale for correlation of ¯uid turbulent
velocity along the particle trajectory is calculated con-
sidering expression (37)
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Tp�x, t� � huiujiÿ1
�

dv

�1
0

Eij

ÿ
x, t; �W

� v�x, x�j�v� dx �39�

The Eulerian turbulent ¯uid velocity correlation in Eq.
(39) was chosen in the form

Eij�x, t; y, x� � huiujiCE�y, x�,

CE�y, x� � exp

�
ÿ jyj

2

L
ÿ x 2

T

�
, TE �

���
p
p
2

T,

LE �
���
p
p
2

L

�40�

where LE is Eulerian spatial integral macroscale in the

moving coordinate system.
Particle contact time with turbulent eddies is similar

to the integral time scale of the carrying phase velocity
¯uctuations along the particle trajectory. From Eqs.

(39) and (40) we achieve the expression for the integral
time scale

Tp

TE

� 1

A3

"
1�

�
g
b

� 2� a
A

� 2
#ÿ1=2

,

A �
"
1� p

2
qp

�
Tp

TE

� 2� g
b

� 2
#1=2

�41�

where b � TL=TE is the ratio of integral time scales of
turbulence in Lagrangian TL and Eulerian variables;
parameter a �W=u describes the e�ect of ``crossings

trajectories'' on the particles turbulent motion energy;
parameter g � uTL=LE is coupled to internal turbulent
microstructure and is determined by the type of ¯ow
(Krashenninnikov and Secundov [20]) and the ¯ow

Reynolds number Sato and Yamamoto [21]). In the
Appendix B, a derivation and analysis of the formula
(41) is submitted.

From expression (41) it follows that with growth of
the relative velocity between the phases, contact time
of particles with turbulent eddies decreases. Estimation

of particles response functions (25) are made in the
sense of following simple expression for the ¯uid vel-
ocity correlation on the particle path

h Eij

ÿ
x, t;Rp�x�, x

�i � huiujiDÿTp ÿ x
� �42�

where D�x� is the Heaviside step-function.

The calculated particles response functions (25) with
assumption (42) have the appearance

qp � 1ÿ exp
ÿÿ Tp=tp

�
, Tp=tp � Tp=�TEOE �

gp � Tp=tp ÿ
�
1ÿ exp

ÿÿ Tp=tp
��

pp � 1ÿ ÿ1� Tp=tp
�

exp
ÿÿ Tp=Tptp

�
hp � 3� 1

2

ÿ
Tp=tp

� 2ÿ2Tp=tp

ÿ ÿ3� Tp=tp
�

exp
ÿÿ Tp=tp

�
where OE � tp=TE is the parameter of particles inertia.

5. Boundary conditions for the balance equations of the

dispersed phase

5.1. Approximate solution of the PDF equation

For closing the equations system for the ®rst and
second moments, Eqs. (31), (32) and (34) are necessary
to ®nd expressions for turbulent transfer of momentum

and energy of chaotic motion in dispersed phase. Also,
we need boundary conditions, representing e�ect of
particles interaction with a wall. For this purpose, we

developed the method of an approximate solution of
the closed PDF equations (10). This method is similar
to the Chapman±Enskog method in the kinetic theory
of gases (for example, Cercignani [22]).

In the PDF equations (10) and (28), we consider
only the members with ®rst-order of derivatives from
particulate phase parameters

DhFi
Dt
�
�
ÿ DhVii

Dt
ÿ vk

@ hVii
@xk

� hUii � tpgi ÿ hVii
tp

�
@ hFi
@vi
� vk

@ hFi
@xk

ÿ gphuiuki @
2hFi

@vi@xk
ÿ 1ÿ dik

tp
so
ik

@ 2hFi
@vi@vk

� L̂hFi �43�

D

Dt
� @

@ t
� hVki @

@xk
, L̂ � 1

tp

@

@vi
vi � sii

tp

@ 2

@vi@vi
�44�

so
ik � qphuiuki

where the operator L̂ describes the processes of par-
ticles chaotic motion generation as a result of particles

interaction with turbulent carrying phase velocity and
viscous dissipation of random particles motion.
The right-hand side of the Eq. (43) may be inter-
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preted as particles ``collision'' with turbulent eddies.
This collision term is written in the simple Fokker±

Plank representation.
We will search the solution of the Eq. (43) in an

appearance of expansion with the ®rst correction terms

linear on gradients of averaged parameters of the dis-
persed phase

hFi � hF0i � hF1i

The ®rst correction satis®es to normalization restric-

tions

�
hF1i dv �

�
vihF1i dv �

�
vivihF1i dv � 0

The zero-order solution hF0i of Eq. (43)L̂hF0i � 0,

without the account of gradients of averaged par-
ameters, characterize a local-equilibrum situation and
have the following form

hF0i � hC�x, t�ij�v� �45�

Here, the PDF of dispersed phase velocity ¯uctuation
j�v� is identical to the expression (38).
For closing the system of equations (31), (32) and

(34), we use the zero-order solution (45), and obtain

DhCi
Dt
� hCi @

@x i
hVii � 0 �46�

DhVii
Dt
� @sii
@x i
� hUii � tpgi ÿ hVii

tp
ÿ Dp

ii

tp

@ lnhCi
@x i

�47�

Dsii
Dt
� 2sii

@ hVii
@x i

� 2

tp

ÿ
so
ii ÿ sii

� �48�

We suppose that the dispersed phase PDF hF�x,v,t�i
depends on coordinates and time only through aver-
aged parameters

DhFi
Dt
� DhCi

Dt

@ hFi
@ hCi �

Dsii
Dt

@ hFi
@sii

�49�

With the account of Eqs. (46)±(49), the equation for
the ®rst correction hF1i, following from Eq. (43), is
given by

Fÿ10 L̂F1 � 1

sii

ÿ
vivk ÿ dikv 2i

�@ hVii
@xk

ÿ �1

ÿ dik �s
o
ik

tp

vivk
siiskk

� vk
sii

�
v 2i
2sii
ÿ
�
dik

� 1

2

��
@sii
@xk

�50�

By solving Eq. (50), we obtain the PDF aproximation

with regards to terms containing gradients of the dis-
persed phase averaged parameters

hF�x, v, t�i � hC�x, t�ijf1�
1

2
so
ik�1ÿ dik � vivksiiskk

ÿ tp
2sii

ÿ
vivk ÿ dikv 2

�@ hVii
@xk

ÿ tp
3
vk

�
v 2i
2sii
ÿ
�
1

2
� dik

��
@ ln sii
@xk

g �51�

With assistance of the formula (51) we derive ex-
pressions representing turbulent transfer of momentum

(for i6�j� and intensity of a chaotic motion in the dis-
persed phase

hvivji � so
ij ÿ

tp
2

�
sii
@ hVji
@x i

� sjj
@ hVii
@x j

ÿ 2

3
d ijskk

@ hVki
@xk

�
�52�

hvivjvki � ÿdij 1
3
�2dik � dii �tpskk @sii

@xk
�53�

5.2. Derivation of boundary conditions

5.2.1. The model of particle±wall collision
With determination of boundary conditions for the

balance equations (31), (32) and (34) we rearranged

the PDF (51) in a boundary layer approximation
�@ hVxi=@y� @ hVxi=@x� in the region near the wall

hFi � hCij
(
1� Sxy

vxvy
sxxsyy

ÿ tp
3

vy
sii

�
v 2i
2sii
ÿ
�
diy

� 1

2

��
@sii
@y

)

Sxy � hvxvyi � qphuxuyi ÿ tp
2
syy

@ hVxi
@y

�54�

where the axis y is directed normal to the surface, the
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axis x coincides with the direction of the stream; Sxy

are turbulent stresses in dispersed phase due to par-

ticles turbulence.
We investigated simple model of particle±wall col-

lision. It is supposed that during the particle collision

with the wall there is a possible loss of an impulse of
the re¯ected particle. Furthermore, normal velocity of
the re¯ected particle changes its sign

V 00x � ktV
0
x, V 00z � ktV

0
z , V 00y � ÿknV 0y �55�

where one prime marks velocity before impact, while
two primes, after; kn, kt are impulse restitution coef-
®cients.

Moreover, for an impulse loss we involve the prob-
ability of particles absorption on the wall, which is
described by coe�cient w: If coe�cient of particles

absorption on the wall is equal to zero w � 0, all par-
ticles touching the wall, do not return in the ¯ow. For
w � 1, particles are not absorbed on the surface.

5.2.2. PDF of re¯ected particles
From a presumption of equivalence between the

¯uxes of particles dropping and rebounding from the
wall, we can construct the PDF of re¯ected particles.

This PDF is combined by PDF of the dropping par-
ticles and shift function, connected with transform-
ation of the incident particles' velocity (44) after the

collision

V 00y hF�
ÿ
x, V 00, t

�i
� ÿw

�1
ÿ1

dV 0x

�0
ÿ1

dV 0y

�1
ÿ1

dV 0zV
0
yZw

ÿ
V 00, V 0

�
� hFÿx, V 0, t

�i
Zw

ÿ
V 0, V 00

�
� d

ÿ
V 00z ÿ ktV

00
z

�
d
ÿ
V 00x ÿ ktV

0
x

�
d
�
V 00y � knV

0
z

�
�56�

In the case of an absolutely elastic surface kn � kt � 1
from the expression (56), it follows that

hF�
ÿ
x, Vx, Vy, Vz, t

�i � whFÿx, Vx, ÿ Vy, Vz, t
�i,

Vy > 0

This boundary condition for PDF agrees well, for
example, with a condition accepted by Menon et al.

[14] for a comparatively absorbing surface.
Utilizing the formulas (54) and (56) we ®nd closed

expression for particles PDF re¯ected from the wall

hF�
ÿ
x, v 00, t

�i
� w

kn
hCij 00

8<:1ÿ Sxy

v 00x v
00
y

ktknsxxsyy

� tp
3

v 00y
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002
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!
@ ln sxx
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n syy
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@ ln syy
@ y
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v
002
z

2k 2
t szz
ÿ 1

2

!
@ ln szz
@ y
�

359=;
j 00�v� �

Y3
i�1

1ÿ
2pk 2

i sii
�1=2 exp

 
ÿ v

002
i

2k 2
i sii

!

v 00x � V 00x ÿ kthVxi, v 00y � V 00y � knhVyi, v 00z � V 00z �57�

The concentrations of rebounding and dropping par-
ticles are

hC�i �
�1
ÿ1

dVx

�1
0

dVy

�1
ÿ1

dVzhF��x, V, t�i

� w
kn
hCÿi �58�

hCÿi �
�1
ÿ1

dVx

�0
ÿ1

dVy

�1
ÿ1

dVzhF�x, V, t�i �59�

Taking into consideration the expression for total con-
centration of particles hCi � hCÿi � hC�i, we obtain
from the formulas (58) and (59) a relation between

dropping and re¯ected particles concentrations near
the wall

hCÿi � knhCi
kn � w

, hC�i � whCi
kn � w

�60�

From formula (60) we can realize that for absorbing
surface w � 0 concentration of dropping particles co-

incides with the total particles concentration in the
¯ow hCÿi � hCi�hC�i � 0�: For the absolute nonelastic
surface kn � 0, we obtain accumulation of particles on

the wall hC�i � hCi�hCÿi � 0�:

5.2.3. The boundary condition for the dispersed phase
concentration
The two-phase dispersed ¯ow can be conditionally

separated into two regions. First ``near wall region'' is
located from the surface over the distance about iner-
tial ¯ight of particles moving with their chaotic vel-

ocities 0 < yRlp1tps1=2: Second, ``external region'' is
situated beyond the distance about y > lp from the sur-
face Fig. 1 It is worth noting that in the Eulerian vari-
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ables the dispersed phase is considered also as a con-
tinuous medium. According to this proposition, the

inertial ¯ight of particles may be determined as the
Eulerian space scale for correlation of dispersed phase
velocity ¯uctuation.

During the process of derivation of boundary con-
ditions for the balance equations, we accept that ¯uxes
of concentration, momentum and turbulent energy of

dispersed phase in external region are equal to a sum
of the ¯uxes of corresponding quantities calculated for
dropping and re¯ected particles in the near-wall region.

The scale of averaged dispersed phase parameters vari-
ation is larger than particles inertial ¯ight lp: Under
this assumption, it is possible to hope that boundary
conditions to be found re¯ect the real picture of for-

mation of dispersed phase averaged parameters. Simi-
lar hypothesis for boundary conditions determination
was used by Nagvi et al. [12], Protopopescu and Keyes

[13] and Menon et al. [14].
The ¯ux of particles concentration toward the wall

in the ¯ow is equal

FfhCig �
�1
ÿ1

dVx

�1
ÿ1

dVy

�1
ÿ1

dVzVyhF�x, V, t�i

� hCihVyi �61�

The ¯ux of concentration of particles dropping on the

wall is designed as

FÿfhCig �
�1
ÿ1

dVx

�0
ÿ1

dVy

�1
ÿ1

dVzVyhF�x, V, t�i

� hCi
2

"
hVyi ÿ

�
2

p
syy

�1=2
#

�62�

The ¯ux of concentration of particles rebounded from

the wall is equal to

F�fhCig �
�1
ÿ1

dVx

�1
0

dVy

�1
ÿ1

dVzVyhF��x, V, t�i

� ÿwFÿ �63�

From the formulas (61)±(63) and balance of concen-
tration ¯uxes

FfhCig � FÿfhCig � F�fhCig

follow boundary condition for particles concentration

1ÿ w
1� w

�
2

p
syy

�1=2

hCi � ÿhVyi hCi �64�

On the basis of Eq. (32) for the dispersed phase nor-

mal velocity component, it is possible to obtain the ap-
proximate expression in the near wall region

hVyihCi � ÿJCm1
ÿhUyi � tpgy

�|����������{z����������}
I

hCi ÿ tp
@syy
@y|���{z���}
II

hCi

ÿ Dp
yy

@ ln hCi
@y|��������{z��������}

III

hCi �65�

where J is dispersed phase deposition velocity on the

wall; Cm is particles mean concentration in a cross-sec-
tion.
Under consideration of Eq. (65), one can notice that

normal component of dispersed phase velocity results

from the particles motion under gravitational force
and velocity of carrying phase in a cross-section, for
example, suction/injection (I), the turbophoretic

motion associated with nonhomogeneousity of par-
ticles turbulent energy (II), and the dispersed phase dif-
fusion velocity due to gradient of particles

concentration (III). From Eqs. (64) and (65) it follows
that boundary condition (64) combines concentration
and gradient of the dispersed phase concentration on
the wall.

In the absence of mass force and turbophoresis, the
boundary condition (64) corresponds with results
obtained earlier in works of Nagvi et al. [12], Protopo-

pescu and Keyes [13], and Menon et al. [14]

1ÿ w
1� w

�
2

p
syy

�1=2

hCi � Dp
yy

@ hCi
@y

5.2.4. The boundary condition for the dispersed phase

axial velocity
For designing the boundary condition for dispersed

phase averaged axial velocity, we calculate momentum

Fig. 1. The sketch of two regions in the two-phase ¯ow.

Arrows show ¯uxes of particles colliding and re¯ected from

the wall. Dashed lines represent imaging behaviour of dis-

persed phase concentration outside the ¯ow.
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¯ux of particles in the ¯ow and momentum ¯ux of the
particles dropping on the wall

F
�
hCihVxi

	
�
�1
ÿ1

dVx

�1
ÿ1

dVy

�1
ÿ1

dVzVyVxhF�x, V, t�i
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hCihVxi

	
�
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dVx

�0
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dVzVyVxhF�x,V, t�i

� hCi
2

"
hVyihVxi

ÿ
�
2

p
syy

�1=2

�Sxy

#
�66�

The ¯ux of momentum of particles re¯ected from the
wall is evaluated with application the formula (57) for

PDF

F�
�
hCihVxi

	
�
�1
ÿ1

dVx

�1
0

dVy

�1
ÿ1

dVzVyVxhF��x, V, t�i

� ÿwktFÿfhCihVxig �67�

From Eqs. (66) and (67) and balance between the
momentum ¯uxes

JfhCihVxig � JÿfhCihVxig � J�fhCihVxig

follows the boundary condition for axial velocity of
dispersed phase"
1ÿ ktw
1� ktw

�
2

p
syy

�1=2

�hVyi
#
hVxi � tp

2
syy

@ hVxi
@y

�68�

5.2.5. The boundary condition for the dispersed phase
turbulent energy components
Fluxes of particles velocity ¯uctuations intensity in

normal and axial directions in the ¯ow are alike

F
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The corresponding ¯uxes for dropping particles look

like
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Fluxes of chaotic motion intensity in normal and axial
directions for rebounding particles are

F�
�hCihv 2y i	
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2
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� ÿwk 2
t Fÿ
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We applied the formulas (69), (71) and (73), and
accordingly (70), (72) and (74) to the following con-
ditions of equality for ¯uxes

F
�hCihv 2y i	 � Fÿ

�hCihv 2y i	� F�
�hCihv 2y i	

F
�hCihv 2x i	 � Fÿ

�hCihv 2x i	� F�
�hCihv 2x i	

The boundary conditions for components of turbulent
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energy of dispersed phase in normal and axial direc-
tions were obtained"
1ÿ k 2

n w
1� k 2

n w
2

�
2

p
syy

�1=2
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In view of formulas (64), (68), (75) and (76) it is
obvious that for completely re¯ecting surface w � 1,
the ¯ux of the dispersed phase on the wall is absent

hVyi � 0, and dynamic parameters of the particles are
regulated by restitution coe�cients. On the elastic sur-
face, kn � 1 and kt � 1, transfer of chaotic motion
energy @syy=@y � 0, @sxx=@y � 0 and axial momentum

of particles toward the surface @ hVxi=@y � 0 are
absent.
The maximum mass transfer of particles on the wall

is realized for completely absorbing surface w � 0: The
particles deposition velocity is determined by intensity
of particles chaotic motion in the near-wall region

J �
�
2

p
syy

�1=2 hCi
Cm

for y � 0

We can remark that on the absorbing surface turbo-
phoretic velocity of particles also reaches the maximum

value. A gradient of axial velocity of particles on the
absorbing surface disappear, which is linked with an
absence in the ¯ow particles re¯ected from the surface.

6. Conclusions

On the basis of averaging over an ensemble of tur-

bulent realizations, the closed equation for PDF of
particles coordinates and velocities in a nonhomo-
geneous turbulent ¯ow was derived.

The system of equations for dispersed phase concen-
tration, momentum and turbulent energy was written.
On the approximate solution of PDF equation, we
obtained closed expressions for turbulent transfer of

momentum and energy of dispersed phase chaotic
motion. These expressions completed the closed
equations of turbulent hydrodynamics and mass trans-

fer of dispersed phase in nonhomogeneous ¯ow.
Boundary conditions, taking into account character

of particles interaction with a surface, was found. The

boundary conditions describe loss of particles impulse
during collision with the surface and probability of
particles absorption on the surface.
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Appendix A

The ¯uctuations of the particle velocity and displace-

ment vpj�t� and rpj�t� depend on carrying phase turbu-
lent velocity uk�x1, x� only for times 0 < xRt: This
causal restriction corresponds with equivalence

d vpj�t�
d uk�x1, x� � 0 and

d rpj�t�
d uk�x1, x� � 0 for x < 0,

or x > t

�A1�

Fluid velocity ¯uctuations on various directions are
approximated by independent random processes. On
the basis of de®nition of functional derivations (Klyat-

skin [18])

dui�x 00, t 00 �
d uj�x 0, t 0 � � dijd�x 00 ÿ x 0 �d�t 00 ÿ t 0 � �A2�

expressions (19) and (20) can be completed.

Appendix B

We substitute the expression (38) in the formula (39)
and integrate over the dispersed velocity ¯uctuation.
As a result we obtain the following formula for the

turbulent ¯uid velocity autocorrelation function along
the particle trajectory

Cp�x� � 1

A3�x� exp

(
ÿ x 2

T 2

"
1� W 2 T 2

L 2 A 2�x�

#)

A�x� �
�
1� 2x 2s

L 2

�1=2

, sii � s

�B1�

From the formula (B1) it is obvious that growth of
relative velocity between phases leads to more intensive
attenuation of the turbulent ¯uid velocity correlation

along the particle path.
Integral time scale of the autocorrelation function

(B1) characterizes the interaction time of the particle

with turbulent eddies

Tp �
�1
0

Cp�x� dx �B2�

While integrating the expression (B2), we take into
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account the slow variations of function A�x�, compare
with exponential term in (B1), and substitute instead

of function A�x� the constant value A � A�Tp�: As a
result, we get the non-linear algebraic equation for
evaluation of the integral time scale Tp

Tp

TE

� 1

A3

"
1�

�
WT

LA

� 2
#ÿ1=2

,

A �
"
1� 2qp

�
Tp u

L

� 2
#1=2

�B3�

The formula (41) is received by using the notation
uT=L � uTE=LE � g=b: For inertial particles without
averaged velocity di�erence between phases, time scale

Tp is close to Eulerian integral time scale TE: In the
case of very small particles impurity �tp40, qp 4 1�
without relative velocity W � 0 between phases, the
time scale Tp (¯uid velocity correlation along the pas-

sive particle trajectory) conforms to integral Lagran-
gian time scale Tp � TL: With this assumption,
utilizing the formula (B3), we can achieve rough esti-

mation for the ratio of Lagrangian±Eulerian time scale
in moving coordinate system

b � TL

TE

�
�
1� p

2
g 2
�ÿ3=2

, g � uTL

LE

�B4�

From (B4) it is obvious that in the coordinate frame
Lagrangian time scale is always less than Eulerian time

scale.
For homogeneous turbulence from the formulas (29)

and (33), we can determine expression for coe�cient of
dispersed phase di�usion

D
p
ii � Tphu 2

i i

Coe�cient of turbulent di�usion of a passive impurity

tp40, �W � 0� is equal to

Do
ii � TLhu 2

i i

The ratio di�usion coe�cients of particles to that of
passive impurity is equivalent

Dp
ii=D

o
ii � Tp=TL

Fig. B1 illustrates e�ect of relative velocity of particles
and parameter of particles inertia OE on the ratio of

turbulent di�usion coe�cients and on the response
function qp: Function qp describes intensity of particles
turbulent motion. Calculation was made for g � 0:5:
For inertial particles, coe�cient of turbulent di�usion
is higher than for passive impurity. The points on
Fig. 2 show experimental data of Snyder and Lamley

[23] and Wells and Stock [24]. We can declare that at
g � 0:5 the ratio of Lagrangian±Eulerian time scale in

the moving coordinate system is b � TL=TE10:61:

Appendix C

Here, we estimate the order of magnitudes of terms

in the left- and right-hand sides of the PDF equation
(43). The terms in the left part of the Eq. (43) corre-
spond with variation of averaged dispersed phase par-

ameters in time and space. We suppose, that
characteristic time scale of variation of averaged par-
ameters exceeds well the particles relaxation time and
integral time scale of turbulence. It is also presumed

that the characteristic length scale of the two-phase
stream cross-section is also signi®cantly greater than
integral scale of turbulence L0 � LE:
For low inertial particles tp � TE, scale of particles

inertial ¯ight is about lp1tp s1=21tpu� LE: In these
circumstances we may use the equilibrium approxi-

mation, within the framework of which intensity of the
particles chaotic motion in a given point depends only
on turbulent intensity of the ¯uid phase in this point

vicinity. Thus, the terms in the right-hand side of the
Eq. (43) in the operator L̂ exceed well the terms in the
left-hand side E � lp=L0 � 1: For this reason, the ap-
proximate expansion for PDF with zero order solution

(45) is correct.

Fig. B1. The relationship between turbulent di�usion coef-

®cients of inertial particles and passive impurity (a), and re-

sponse function describing particles turbulent energy (b).

Points on Fig. 2(a) are experimental results (Snyder and Lam-

ley [23] and Wells and Stock [23]).
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For inertial particles tp � TE, characteristic length
scale of dispersed phase velocity ¯uctuations is of the

order lp1tp�qp u 2�1=21�tpTE�1=2u (formula (26) for
function qp is used). Characteristic length scale of
spatial variations of the dispersed phase averaged par-

ameters is about Lp > L0 � lp (Menon et al. [14]).
Therefore, the terms in the left-hand side of Eq. (43)
are lesser than terms in the right-hand side by E �
lp=Lp < 1 times. Hence, for inertial particles the ap-
proximate solution of the PDF equation in the expan-
sion is also appropriate.
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